

Table of Contents

About the book 5 ..
About the author 6 ...
Sponsors 7 ..
Ebook PDF Generation Tool 9 ...
Book Cover 10 ..
License 11 ..

Databases 12 ..
Tables and columns 13 ...

MySQL 15 ...
Installing MySQL 16 ..
Accessing MySQL via CLI 18 ...
Creating a database 19 ..
Configuring .my.cnf 20 ...
The mysqladmin command 21 ...
GUI clients 22 ...

Tables 23 ...
Data types 24 ...
Creating a database 25 ..
Creating tables 27 ..
Dropping tables 29 ...
Allowing NULL values 30 ..
Specifying a primary key 31 ...
Updating tables 32 ...

Basic Syntax 34 ..
INSERT 35 ...
SELECT 36 ..
UPDATE 38 ...
DELETE 39 ..
Comments 40 ...
Conclusion 41 ...

SELECT 42 ..
SELECT all columns 44 ...
Formatting 46 ...
SELECT specific columns only 47 ...
LIMIT 48 ..
COUNT 49 ...
MIN, MAX, AVG, and SUM 50 ..
DISTINCT 52 ...
Conclusion 54 ...

WHERE 55 ..
WHERE Clause example 56 ..
Operators 58 ..
AND keyword 59 ...
OR keyword 60 ...
LIKE operator 61 ...

IN operator 62 ..
IS operator 63 ...
Conclusion 64 ...

Sorting with ORDER and GROUP BY 65 ..
ORDER BY 66 ..
GROUP BY 69 ..

INSERT 70 ..
Inserting multiple records 72 ...

UPDATE 73 ..

DELETE 76 ...

JOIN 77 ...
Cross join 80 ...
Inner join 82 ...
Left join 84 ...
Right join 85 ...
Conclusion 87 ...

The MySQL dump command 88 ...
Exporting a Database 89 ..
Exporting all databases 90 ...

Automated backups 92 ...
Conclusion 94 ...

Conclusion 95 ...
Other eBooks 96 ...

5

About the book

This version was published on May 18 2021

This is an open-source introduction to SQL guide that will help you learn
the basics of SQL and start using relational databases for your SysOps,
DevOps, and Dev projects. No matter if you are a DevOps/SysOps
engineer, developer, or just a Linux enthusiast, you will most likely have
to use SQL at some point in your career.

The guide is suitable for anyone working as a developer, system
administrator, or a DevOps engineer and wants to learn the basics of
SQL.

6

About the author

My name is Bobby Iliev, and I have been working as a Linux DevOps
Engineer since 2014. I am an avid Linux lover and supporter of the
open-source movement philosophy. I am always doing that which I
cannot do in order that I may learn how to do it, and I believe in sharing
knowledge.

I think it's essential always to keep professional and surround yourself
with good people, work hard, and be nice to everyone. You have to
perform at a consistently higher level than others. That's the mark of a
true professional.

For more information, please visit my blog at https://bobbyiliev.com,
follow me on Twitter @bobbyiliev_ and YouTube.

7

Sponsors

This book is made possible thanks to these fantastic companies!

DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at
scale.

It provides highly available, secure, and scalable compute, storage, and
networking solutions that help developers build great software faster.

Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources
available.

For more information, please visit https://www.digitalocean.com or
follow @digitalocean on Twitter.

If you are new to DigitalOcean, you can get a free $100 credit and spin
up your own servers via this referral link here:

Free $100 Credit For DigitalOcean

DevDojo

The DevDojo is a resource to learn all things web development and web
design. Learn on your lunch break or wake up and enjoy a cup of coffee
with us to learn something new.

Join this developer community, and we can all learn together, build
together, and grow together.

8

Join DevDojo

For more information, please visit https://www.devdojo.com or follow
@thedevdojo on Twitter.

9

Ebook PDF Generation Tool

This ebook was generated by Ibis developed by Mohamed Said.

Ibis is a PHP tool that helps you write eBooks in markdown.

10

Book Cover

The cover for this ebook was created with Canva.com.

If you ever need to create a graphic, poster, invitation, logo,
presentation – or anything that looks good — give Canva a go.

11

License

MIT License

Copyright (c) 2020 Bobby Iliev

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

12

Databases

Before we dive deep into SQL, let's quickly define what a database is.

The definition of databases from Wikipedia is:

A database is an organized collection of data, generally stored and
accessed electronically from a computer system.

In other words, a database is a collection of data stored and structured
in different database tables.

13

Tables and columns

You've mostlikely worked with spreadsheet systems like Excel or
Google Sheets. At the very basic, database tables are quite similar to
spreadsheets.

Each table has different columns which could contain different types of
data.

For example, if you have a todo list app, you would have a database,
and in your database, you would have different tables storing different
information like:

Users - In the users table, you would have some data for your
users like: username, name, and active, for example.
Tasks - The tasks table would store all of the tasks that you are
planning to do. The columns of the tasks table would be for
example, task_name, status, due_date and priority.

The Users table will look like this:

+----+----------+---------------+--------+
| id | username | name | active |
+----+----------+---------------+--------+
1	bobby	Bobby Iliev	true
2	grisi	Greisi I.	true
3	devdojo	Dev Dojo	false
+----+----------+---------------+--------+

Rundown of the table structure:

We have 4 columns: id, username, name and active
We also have 3 entries/users
The id column is a unique identifier of each user and is auto-
incremented.

14

In the next chapter, we will learn how to install MySQL and create our
first database.

15

MySQL

Now that you know what a database, table, and column are, the next
thing that you would need to do is install a database service where you
would be running your SQL queries on.

We would be using MySQL as it is free, open-source, and very widely
used.

16

Installing MySQL

As we are going to use Ubuntu, in order to install MySQL run the
following commands:

First update your apt repository:

sudo apt update -y

Then install MySQL:

sudp apt install mysql-server mysql-client

We are installing 2 packages, one is the actual MySQL server, and the
other is the MySQL client, which would allow us to connect to the
MySQL server and run our queries.

In order to check if MySQL is running, run the following command:

sudo systemctl status mysql.service

In order to secure your MySQL server, you could run the following
command:

sudo mysql_secure_installation

Then follow the prompt and finally choose a secure password and save
it in a secure place like a password manager.

With that, you would have MySQL installed on your Ubuntu server. The
above should also work just fine on Debina.

17

Install MySQL on Mac

I would recommend installing MySQL using Homebrew:

brew install mysql

After that start MySQL:

brew services start mysql

And finally, secure it:

mysql_secure_installation

In case that you ever need to stop the MySQL service, you could do so
with the following command:

brew services stop mysql

Install MySQL on Windows

In order to install MySQL on Windows, I would recommend following the
steps from the official documentation here:

https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html

18

Accessing MySQL via CLI

To access MySQL run the mysql command followed by your user:

mysql -u root -p

19

Creating a database

After that, switch to the demo database that we created in the previous
chapter:

USE demo;

To exit the just type the following:

exit;

20

Configuring .my.cnf

By configuring the ~/.my.cnf file in your user's home directory, MySQL
would allow you to login without prompting you for a password.

In order to make that change, what you need to do is first create a
.my.cnf file in your user's home directory:

touch ~/.my.cnf

After that, set secure permissions so that other regular users could not
read the file:

chmod 600 ~/.my.cnf

Then using your favorite text editor, open the file:

nano ~/.my.cnf

And add the following configuration:

[client]
user=YOUR_MYSQL_USERNAME
password=YOUR_MYSQL_PASSWORD

Make sure to update your MySQL credentials accordingly, then save the
file and exit.

After that, if you run just mysql, you will be authenticated directly with
the credentials that you've specified in the ~/.my.cnf file without being
prompted for a password.

21

The mysqladmin command

As a quick test, you could check all of your open SQL connections by
running the following command:

mysqladmin proc

The mysqladmin tool would also use the client details from the
~/.my.cnf file, and it would list your current MySQL process list.

Another cool thing that you could try doing is combining this with the
watch command and kind of monitor your MySQL connections in almost
real-time:

watch -n1 mysqladmin proc

To stop the watch command, just hit CTRL+C

22

GUI clients

If you prefer using GUI clients, you could take a look a the following
ones and install them locally on your laptop:

MySQL Workbench
Sequel Pro
TablePlus

This will allow you to connect to your database via a graphical interface
rather than the mysql command-line tool.

23

Tables

Before we get started with SQL, let's learn how to create tables and
columns.

As an example, we are going to create a users table with the following
columns:

id - this is going to be the primary ID of the table and would be the
unique identifier of each user.
username - this column would hold the username of our users
name - here, we will store the full name of the users
status - here, we will store the status of a user, which would
indicate if a user is active or not.

You need to specify the data type of each column.

In our case it would be like this:

id - Intiger
username - Varchar
name - Varchar
status - Number

24

Data types

The most common data types that you would come across are:

CHAR(size): Fixed-length character string with a maximum length of
255 bytes.
VARCHAR(size): Variable-length character string. Max size is
specified in parenthesis.
TEXT(size): A string with a maximum length of 65,535 bytes.
INTEGER(size) or INT(size): A medium integer.
BOOLEAN or BOOL: Holds a true or false value.
DATE: Holds a date.

Let's have the following users table as an example:

id: We would want to set the ID to INT.
name: The name should fit in a VARCHAR column.
about: As the about section could be longer, we could set the
column data type to TEXT.
birthday: For the birthday column of the user, we could use DATE.

For more information on all data types available, make sure to check
out the official documentation here.

25

Creating a database

As we briefly covered in the previous chapter, before you could create
tables, you would need to create a database by running the following:

First access MySQL:

mysql -u root -p

Then create a database called demo_db:

CREATE DATABASE demo_db;

Note: the database name needs to be unique, if you already have a
database named demo_db you would receive an error that the database
already exists.

You can consider this database as the container where we would create
all of the tables in.

Once you've created the database, you need to switch to that database:

USE demo_db;

You can think of this as accessing a directory in Linux with the cd
command. With USE, we switch to a specific database.

Alternatively, if you do not want to 'switch' to the specific database, you
would need to specify the so-called fully qualified table name. For
example, if you had a users table in the demo_db, and you wanted to
select all of the entries from that table, you could use one of the

26

following two approaches:

Switch to the demo_db first and then run a select statement:

USE demo_db;
SELECT username FROM demo_db.users;

Alternatively, rather than using the USE command first, specify the
database name followed by the table name separated with a dot:
db_name.table_name:

SELECT username FROM demo_db.users;

We are going to cover the SELECT statement more in-depth in the
following chapters.

27

Creating tables

In order to create a table, you need to use the CREATE TABLE statement
followed by the columns that you want to have in that table and their
data type.

Let's say that we wanted to create a users table with the following
columns:

id: An integer value
username: A varchar value
about: A text type
birthday: Date
active: True or false

The query that we would need to run to create that table would be:

CREATE TABLE users
(
 id INT,
 username VARCHAR(255),
 about TEXT,
 birthday DATE,
 active BOOL
);

Note: You need to select a database first with the USE command as
mentioned above. Otherwise you will get the following error: `ERROR
1046 (3D000): No database selected.

To list the available tables, you could run the following command:

SHOW TABLES;

28

Output:

+-------------------+
| Tables_in_demo_db |
+-------------------+
| users |
+-------------------+

29

Dropping tables

You can drop or delete tables by using the DROP TABLE statement.

Let's test that and drop the table that we've just created:

DROP TABLE users;

The output that you would get would be:

Query OK, 0 rows affected (0.03 sec)

And now, if you were to run the SHOW TABLES; query again, you would
get the following output:

Empty set (0.00 sec)

30

Allowing NULL values

By default, each column in your table can hold NULL values. In case that
you don't wanted to allow NULL values for some of the columns in a
specific table, you need to specify this during the table creation or later
on change the table to allow that.

For example, let's say that we want the username column to be a
required one, we would need to alter the table create statement and
include NOT NULL right next to the username column like this:

CREATE TABLE users
(
 id INT,
 username VARCHAR(255) NOT NULL,
 about TEXT,
 birthday DATE,
 active BOOL
);

That way, when you try to add a new user, MySQL will let you know that
the username column is required.

31

Specifying a primary key

The primary key column, which in our case is the id column, is a unique
identifier for our users.

We want the id column to be unique, and also, whenever we add new
users, we want the ID of the user to autoincrement for each new user.

This can be achieved with a primary key and AUTO_INCREMENT. The
primary key column needs to be NOT NULL as well.

If we were to alter the table creation statement, it would look like this:

CREATE TABLE users
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 username VARCHAR(255) NOT NULL,
 about TEXT,
 birthday DATE,
 active BOOL
);

32

Updating tables

In the above example, we created a new table and then dropped it as it
was empty. However, in a real-life scenario, this would really be the
case.

So whenever you need to add or remove a new column from a specific
table, you would need to use the ALTER TABLE statement.

Let's say that we wanted to add an email column with type varchar to
our users table.

The syntax would be:

ALTER TABLE users ADD email VARCHAR(255);

After that, if you were to describe the table, you would see the new
column:

DESCRIBE users;

Output:

+----------+--------------+------+-----+---------+
| Field | Type | Null | Key | Default |
+----------+--------------+------+-----+---------+
id	int	NO	PRI	NULL
username	varchar(255)	NO		NULL
about	text	YES		NULL
birthday	date	YES		NULL
active	tinyint(1)	YES		NULL
email	varchar(255)	YES		NULL
+----------+--------------+------+-----+---------+

33

If you wanted to drop a specific column, the syntax would be:

ALTER TABLE table_name DROP COLUMN column_name;

Note: keep in mind that this is a permanent change, and if you have
any critical data in the specific column, it would be deleted instantly.

You can use the ALTER TABLE statement to also change the data type of
a specific column. For example, you could change the about column
from TEXT to LONGTEXT type, which could hold longer strings.

Note: Important thing to keep in mind is that if a specific table already
holds a particular type of data value like an integer, you can't alter it to
varchar, for example. Only if the column does not contain any values,
then you could make the change.

34

Basic Syntax

In this chapter, we will go over the basic SQL syntax.

SQL statements are basically the 'commands' that you run against a
specific database. Through the SQL statements, you are telling MySQL
what you want it to do, for example, if you wanted to get the username
of all of your users stored in the users table, you would run the
following SQL statement:

SELECT username FROM users ;

Rundown of the statement:

SELECT: First, we specify the SELECT keyword, which indicates that
we want to select some data from the database. Other popular
keywords are: INSERT, UPDATE and DELETE.
username: Then we specify which column we want to select
users: After that, we specify the table that we want to select the
data from.
The ; is required. Every SQL statement needs to end with a
semicolumn.

If you run the above statement, you will get no results as the new users
table that we've just created is empty.

As a good practice, all SQL keywords should be with uppercase,
however, it would work just fine if you use lower case as well.

Let's go ahead and cover the basic operations next.

35

INSERT

To add data to your database, you would use the INSERT statement.

Let's use the table that we created in the last chapter and insert 1 user
into our users table:

INSERT INTO users(username, email, active) VALUES('bobby',
'bobby@bobbyiliev.com', true);

Rundown of the insert statement:

INSERT INTO users: first, we specify the INSERT INTO keyword,
which tells MySQL that we want to insert data into the users table.
users (username, email, active): then, we specify the table
name users and the columns that we want to insert data into.
VALUES: then, we specify the values that we want to insert in.

36

SELECT

Once we've inserted that user, let's go ahead and retrieve the
information.

To retrieve information from your database, you could use the SELECT
statement:

SELECT * FROM users;

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 1 | bobby | NULL | NULL | 1 | bobby@b...com |
+----+----------+-------+----------+--------+---------------+

As we specify * right after the SELECT keyword, this means that we
want to get all of the columns from the users table.

If we wanted to the only the username and the email columns instead,
we would change the statement to:

SELECT username,email FROM users;

This will return all of the users, but as of the time being we have only 1:

37

+----------+----------------------+
| username | email |
+----------+----------------------+
| bobby | bobby@bobbyiliev.com |
+----------+----------------------+

38

UPDATE

In order to modify data in your database, you could use the UPDATE
statement.

The syntax would look like this:

UPDATE users SET username='bobbyiliev' WHERE id=1;

Rundown of the statement:

UPDATE users: first, we specify the UPDATE keyword followed by
the table that we want to update
username='bobbyiliev' Then we specify the columns that we
want to update and the new value that we want to set.
WHERE id=1: Finally, by using the WHERE clause, we specify which
user should be updated. In our case it is the user with ID 1.

NOTE: If we don't specify a WHERE clause, all of the entries inside the
users table would be updated, and all users would have the username
set to bobbyiliev. You need to be careful when you use the UPDATE
statement without a WHERE clause, as every single row will be updated.

We are going to cover WHERE more in-depth in the next few chapters.

39

DELETE

As the name suggests, the DELETE statement would remove data from
your database.

The syntax is as follows:

DELETE FROM users WHERE id=1;

Similar to the UPDATE statement, if you don't specify a WHERE clause, all
of the entries from the table will be affected, meaning that all of your
users will be deleted.

40

Comments

In case that you are writing a larger SQL script, it might be helpful to
add some comments so that later on, when you come back to the
script, you would know what each line does.

As with all programming languages, you can add comments in SQL as
well.

There are two types of comments:

Inline comments:

To do so, you just need to add -- before the text that you want to
comment out:

SELECT * FROM users; -- Get all users

Multiple-line comments

Similar to some other programming languages in order to comment
multiple lines, you could wrap the text in /* */ as follows:

/*
Get all of the users
from your database
*/
SELECT * FROM users;

You could write that in .sql file and then run it later on, or execute the
few lines directly.

41

Conclusion

Those were some of the most common basic SQL statements.

In the next chapter, we are going to go over each of the above
statements more in-depth.

42

SELECT

As we briefly covered in the previous chapter, the SELECT statement
allows us to retrieve data from a specific database.

You can use SELECT to get all of your users or a list of users that match
a certain criteria.

Before we dive into the SELECT statement let's quickly create a
database:

CREATE DATABASE sql_demo;

Switch to that database:

USE sql_demo;

Create a new users table:

CREATE TABLE users
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 username VARCHAR(255) NOT NULL,
 about TEXT,
 email VARCHAR(255),
 birthday DATE,
 active BOOL
);

Insert some data that we could work with:

43

INSERT INTO users
 (username, email, active)
VALUES
 ('bobby', 'b@devdojo.com', true),
 ('devdojo', 'd@devdojo.com', false),
 ('tony', 't@devdojo.com', true);

Output:

Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

We are going to learn more about the INSERT statement in the following
chapters.

44

SELECT all columns

Now that we've got some data in the users table, let's go ahead and
retrieve all of the entries from that table:

SELECT * FROM users;

Rundown of the statement:

SELECT: first, we specify the action that we want to execute, in our
case, we want to select or get some data from the database.
*: the star here indicates that we want to get all of the columns
associated with the table that we are selecting from.
FROM: the from statement tells MySQL which table we want to
select the data from. You need to keep in mind that you can select
from multiple tables, but this is a bit more advanced, and we are
going to cover this in the next few chapters
users: this is the table name that we want to select the data from.

This will return all of the entries in the users table along with all of the
columns:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
1	bobby	NULL	NULL	1	b@devdojo.com
2	devdojo	NULL	NULL	0	d@devdojo.com
3	tony	NULL	NULL	1	t@devdojo.com
+----+----------+-------+----------+--------+---------------+
3 rows in set (0.00 sec)

As you can see, we get a list of the 3 users that we've just created,
including all of the columns in that table. In some cases, the table might
have a lot of columns, and you might not want to see all of them. For

45

example, we have the about and birthday columns that are all NULL at
the moment. So let's see how we could limit that and get only a list of
specific columns.

46

Formatting

As we mentioned in the previous chapters, each SQL statement needs
to end with a semi column: ;. Alternatively, rather than using a semi
column, you could use the \G characters which would format the output
in a list rather than a table.

The syntax is absolutely the same but you just change the ; with \G:

SELECT * FROM users \G

The output will be formatted like this:

*************************** 1. row ***************************
 id: 1
username: bobby
 about: NULL
birthday: NULL
 active: 1
 email: b@devdojo.com
*************************** 2. row ***************************
 id: 2
username: devdojo
 about: NULL
birthday: NULL
 active: 0
 email: d@devdojo.com
...

This is very handy whenever your table consists of a large number of
columns and they can't fit on the screen, which makes it very hard to
read the result set.

47

SELECT specific columns only

You could limit this to a specific set of columns. Let's say that you only
needed the username and the active columns. In this case, you would
change the * symbol with the columns that you want to select divided
by a comma:

SELECT username,active FROM users;

Output:

+----------+--------+
| username | active |
+----------+--------+
bobby	1
devdojo	0
tony	1
+----------+--------+

As you can see, we are getting back only the 2 columns that we've
specified in the SELECT statement.

48

LIMIT

The LIMIT clause is very handy in case that you want to limit the
number of results that you get back. For example, at the moment, we
have 3 users in our database, but let's say that you only wanted to get
1 entry back when you run the SELECT statement.

This can be achieved by adding the LIMIT clause at the end of your
statement, followed by the number of entries that you want to get. For
example, let's say that we wanted to get only 1 entry back. We would
run the following query:

SELECT * FROM users LIMIT 1;

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 2 | bobby | NULL | NULL | 1 | b@devdojo.com |
+----+----------+-------+----------+--------+---------------+

If you wanted to get 2 entries, you would change LIMIT 2 and so on.

49

COUNT

In case that you wanted to get only the number of entries in a specific
column, you could use the COUNT function. This is a function that I
personally use very often.

The syntax is the following:

SELECT COUNT(*) FROM users;

Output:

+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+

50

MIN, MAX, AVG, and SUM

Another useful set of functions similar to COUNT that would make your
life easier are:

MIN: this would give you the smallest value of a specific column.
For example, if you had an online shop and you wanted to get the
lowest price, you would use the MIN function. In our case, if we
wanted to get the lowest user ID, we would run the following:

SELECT MIN(id) FROM users;

This would return 1 as the lowest user ID that we have is 1.

MAX: just like MIN, but it would return the highest value:

SELECT MAX(id) FROM users;

In our case, this would be 3 as we have only 3 users, and the highest
value of the id column is 3.

AVG: as the name suggest, it would sum up all of the values of a
specific column and return the average value. As we have 3 users
with ids 1, 2, and 3, which is 6 divided by 3 users is 2.

SELECT AVG(id) FROM users;

SUM: this function takes all of the values from the specified column
and sums them up:

51

SELECT SUM(id) FROM users;

52

DISTINCT

In some cases, you might have duplicate entries in a table, and in order
to get only the unique values, you could use DISTINCT.

To better demonstrate this, let's run the insert statement one more
time so that we could duplicate the existing users and have 6 users in
the users table:

INSERT INTO users
 (username, email, active)
VALUES
 ('bobby', 'b@devdojo.com', true),
 ('devdojo', 'd@devdojo.com', false),
 ('tony', 't@devdojo.com', true);

Now, if you run SELECT COUNT(*) FROM users; you would get 6 back.

Let's also select all users and show only the username column:

SELECT username FROM users;

Output:

+----------+
| username |
+----------+
| bobby |
| devdojo |
| tony |
| bobby |
| devdojo |
| tony |
+----------+

53

As you can see, each name is present multiple times in the list. We
have 2 times bobby, 2 times devdjo and 2 times tony.

If we wanted to only show the unique usernames, we could add the
DISTINCT keyword to our select statement:

SELECT DISTINCT username FROM users;

Output:

+----------+
| username |
+----------+
| bobby |
| devdojo |
| tony |
+----------+

As you can see, the duplicate entries have been removed from the
output.

54

Conclusion

The SELECT statement is essential whenever working with SQL. In the
next chapter, we are going to learn how to use the WHERE clause and
take the SELECT statements to the next level.

55

WHERE

The WHERE clause allows you to specify different conditions so that you
could filter out the data and get a specific result set.

You would add the WHERE clause after the FROM clause.

The syntax would look like this:

SELECT column_name FROM table_name WHERE column=some_value;

56

WHERE Clause example

If we take the example users table from the last chapter, let's say that
we wanted to get only the active users. The SQL statement would look
like this:

SELECT DISTINCT username,email,active FROM users WHERE
active=true;

Output:

+----------+---------------+--------+
| username | email | active |
+----------+---------------+--------+
| bobby | b@devdojo.com | 1 |
| tony | t@devdojo.com | 1 |
+----------+---------------+--------+

As you can see, we are only getting tony and bobby back as their
active column is true or 1. If we wanted to get the inactive users, we
would have to change the WHERE clause and set the active to false:

+----------+---------------+--------+
| username | email | active |
+----------+---------------+--------+
| devdojo | d@devdojo.com | 0 |
+----------+---------------+--------+

As another example, let's say that we wanted to select all users with
the username bobby. The query, in this case, would be:

57

SELECT username,email,active FROM users WHERE
username='bobby';

The output would look like this:

+----------+---------------+--------+
| username | email | active |
+----------+---------------+--------+
| bobby | b@devdojo.com | 1 |
| bobby | b@devdojo.com | 1 |
+----------+---------------+--------+

We are getting 2 entries back as we have 2 users in our database with
the username bobby.

58

Operators

In the example, we used the = operator, which checks if the result set
matches the value that we are looking for.

A list of popular operators are:

!= : Not equal operator
> : Greater than
>= : Greater than or equal operator
< : Less than operator
<= : Less than or equal operator

For more information about other available operators, make sure to
check the official documentation here.

59

AND keyword

In some cases, you might want to specify multiple criteria. For example,
you might want to get all users that are active, and the username
matches a specific value. This could be achieved with the AND keyword.

Syntax:

SELECT * FROM users WHERE username='bobby' AND active=true;

The result set would contain the data that matches both conditions. In
our case, the output would be:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 2 | bobby | NULL | NULL | 1 | b@devdojo.com |
| 5 | bobby | NULL | NULL | 1 | b@devdojo.com |
+----+----------+-------+----------+--------+---------------+

If we were to change the AND statement to active=false, we would not
get any results back as none of the entries in our database match that
condition:

SELECT * FROM users WHERE username='bobby' AND active=false;

-- Output:
Empty set (0.01 sec)

60

OR keyword

In some cases, you might want to specify multiple criteria. For example,
you might want to get all users that are active, or their username
matches a specific value. This could be achieved with the OR keyword.

As with any other programming language, the main difference between
AND and OR is that with AND, the result would only return the values that
match the two conditions, and with OR, you would get a result that
matches either of the conditions.

For example, if we were to run the same query as above but change the
AND to OR, we would get all users that have the username bobby and
also all users that are not active:

SELECT * FROM users WHERE username='bobby' OR active=false;

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
2	bobby	NULL	NULL	1	b@devdojo.com
3	devdojo	NULL	NULL	0	d@devdojo.com
5	bobby	NULL	NULL	1	b@devdojo.com
6	devdojo	NULL	NULL	0	d@devdojo.com
+----+----------+-------+----------+--------+---------------+

61

LIKE operator

Unlike the = operator, the LIKE operator allows you to do wildcard
matching similar to the * symbol in Linux.

For example, if you wanted to get all users that have the y letter in
them, you would run the following:

SELECT * FROM users WHERE username LIKE '%y%';

Output

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 2 | bobby | NULL | NULL | 1 | b@devdojo.com |
| 4 | tony | NULL | NULL | 1 | t@devdojo.com |
+----+----------+-------+----------+--------+---------------+

As you can see, we are getting only tony and bobby but not devdojo as
there is no y in devdojo.

This is quite handy when you are building some search functionality for
your application.

62

IN operator

The IN operator allows you to provide a list expression and would return
the results that match that list of values.

For example, if you wanted to get all users that have the username
bobby and devdojo, you could use the following:

SELECT * FROM users WHERE username IN('bobby', 'devdojo');

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
2	bobby	NULL	NULL	1	b@devdojo.com
3	devdojo	NULL	NULL	0	d@devdojo.com
5	bobby	NULL	NULL	1	b@devdojo.com
6	devdojo	NULL	NULL	0	d@devdojo.com
+----+----------+-------+----------+--------+---------------+

This allows you to simplify your WHERE expression so that you don't have
to add numerous OR statements.

63

IS operator

If you were to run SELECT * FROM users WHERE about=NULL; you
would get an empty result set as the = operator can't be used to check
for NULL values. Instead, you would need to use the IS operator
instead.

The IS operator is only used to check NULL values, and the syntax is the
following:

SELECT * FROM users WHERE about IS NULL;

If you wanted to get the results where the value is not NULL, you just
need to change IS to IS NOT:

SELECT * FROM users WHERE about IS NOT NULL;

64

Conclusion

In this chapter, you've learned how to use the WHERE clause with
different operators to get different type of results based on the
parameters that you provide.

In the next chapter, we will learn how to order the result set.

65

Sorting with ORDER and
GROUP BY

In the last chapter, you've learned how to use the SELECT statement
with the WHERE clause and filter the result set based on some
conditions.

More often than not, you would want to order the results in a specific
way based on a particular column. For example, you might want to
order the users, alphabetically, based on their username.

In this chapter, you will learn how to use the ORDER BY and GROUP BY
clauses.

66

ORDER BY

The main thing that you need to keep in mind when using ORDER BY is
that you need to specify the column or columns that you want to order
by. In case that you want to specify multiple columns to order by, you
need to separate each column with a comma.

If we were to run the following statement without providing an ORDER
BY clause:

SELECT id,username FROM users ;

We will get the following output:

+----+----------+
| id | username |
+----+----------+
2	bobby
3	devdojo
4	tony
5	bobby
6	devdojo
7	tony
+----+----------+

As you can see, the result set is sorted by the primary key, which in our
case is the id of each user. If we wanted to sort the output by
username, we would run the following query:

SELECT id,username FROM users ORDER BY username;

Note the ORDER BY statement followed by the name of the column that
we want to order by.

67

The output in this case will be:

+----+----------+
| id | username |
+----+----------+
2	bobby
5	bobby
3	devdojo
6	devdojo
4	tony
7	tony
+----+----------+

Note: You can use ORDER BY with and without specifying a WHERE clause.
But in case that you've specified a WHERE clause, you need to put the
ORDER BY clause after the WHERE clause.

The default sorting is ascending and is specified with the ASC keyword,
and you don't need to explicitly add it, but if you want to sort by
descending order, you need to use the DESC keyword.

If we use the query above and just add DESC at the end as follows:

SELECT id,username FROM users ORDER BY username DESC;

We will see the following output:

68

+----+----------+
| id | username |
+----+----------+
4	tony
7	tony
3	devdojo
6	devdojo
2	bobby
5	bobby
+----+----------+

As you can see, we've got the same list of users sorted alphabetically
but in reverse order.

69

GROUP BY

The GROUP BY statement allows you to use a function like COUNT, MIN,
MAX and etc., with multiple columns.

For example, let's say that we wanted to get all of the count of all users
sorted by username.

In our case, we have 2 users with username bobby, 2 users with
username tony, and 2 users with username devdojo. This represented
in an SQL statement would look like this:

SELECT COUNT(username), username FROM users GROUP by username;

The output, in this case, would be:

+-----------------+----------+
| COUNT(username) | username |
+-----------------+----------+
2	bobby
2	devdojo
2	tony
+-----------------+----------+

The GROUP BY statement grouped the usernames that were identical. So
bobby, tony and devdojo, and then it ran a COUNT on each of them.

The main thing to keep in mind here is that the GROUP BY should be
added after the FROM clause and after the WHERE clause in case that
you have one.

70

INSERT

To add data to your database, you would use the INSERT statement.
You can insert data into one table at a time only.

The syntax is the following:

INSERT INTO
table_name(column_name_1,column_name_2,column_name_n)
VALUES('value_1', 'value_2', 'value_3');

You would start with the INSERT INTO statement, followed by the table
that you want to insert the data into. Then you would specify the list of
the columns that you want to insert the data into. Finally, with the
VALUES statement, you specify the data that you want to insert.

The important part is that you need to keep the order of the values
based on the order of the columns that you've specified.

In the above example the value_1 would go into column_name_1, the
value_2 would go into column_name_2 and the value_3 would go into
column_name_x

Let's use the table that we created in the last chapter and insert 1 user
into our users table:

INSERT INTO users(username, email, active) VALUES('greisi',
'g@devdojo.com', true);

Rundown of the insert statement:

71

INSERT INTO users: first, we specify the INSERT INTO keywords
which tells MySQL that we want to insert data into the users table.
users (username, email, active): then, we specify the table
name users and the columns that we want to insert data into.
VALUES: then, we specify the values that we want to insert in.

72

Inserting multiple records

We've briefly covered this in one of the previous chapters, but in some
cases, you might want to add multiple records in a specific table.

Let's say that we wanted to create 5 new users, rather than running 5
different queries like this:

INSERT INTO users(username, email, active) VALUES('user1',
'user1@devdojo.com', true);
INSERT INTO users(username, email, active) VALUES('user1',
'user2@devdojo.com', true);
INSERT INTO users(username, email, active) VALUES('user1',
'user3@devdojo.com', true);
INSERT INTO users(username, email, active) VALUES('user1',
'user4@devdojo.com', true);
INSERT INTO users(username, email, active) VALUES('user1',
'user5@devdojo.com', true);

What you could do is to combine this into one INSERT statement by
providing a list of the values that you want to insert as follows:

INSERT INTO users
 (username, email, active)
VALUES
 ('user1', 'user1@devdojo.com', true),
 ('user2', 'user2@devdojo.com', true),
 ('user3', 'user3@devdojo.com', true),
 ('user4', 'user4@devdojo.com', true),
 ('user5', 'user5@devdojo.com', true);

That way, you will add 5 new entries in your users table with a single
INSERT statement. This is going to be much more efficient.

73

UPDATE

As the name suggests, whenever you have to update some data in your
database, you would use the UPDATE statement.

You can use the UPDATE statement to update multiple columns in a
single table.

The syntax would look like this:

UPDATE users SET username='bobbyiliev' WHERE id=1;

Rundown of the statement:

UPDATE users: first, we specify the UPDATE keyword followed by
the table that we want to update
username='bobbyiliev' Then we specify the columns that we
want to update and the new value that we want to set.
WHERE id=1: Finally, by using the WHERE clause, we specify which
user should be updated. In our case, it is the user with ID 1.

The most important thing that you need to keep in mind is that if you
don't specify a WHERE clause, all of the entries inside the users table
would be updated, and all users would have the username set to
bobbyiliev.

Important: You need to be careful when you use the UPDATE statement
without a WHERE clause as every single row will be updated.

If you have been following along all of the user entries in our users
table currently have no data in the about column:

74

+----+----------+-------+
| id | username | about |
+----+----------+-------+
2	bobby	NULL
3	devdojo	NULL
4	tony	NULL
5	bobby	NULL
6	devdojo	NULL
7	tony	NULL
+----+----------+-------+

Let's go ahead and update this for all users and set the column value to
404 bio not found for example:

UPDATE users SET about='404 bio not found;

The output would let you know how many rows have been affected by
the query:

Query OK, 6 rows affected (0.02 sec)
Rows matched: 6 Changed: 6 Warnings: 0

Now, if you were to run a select for all users, you would get the
following result:

+----+----------+-------------------+
| id | username | about |
+----+----------+-------------------+
2	bobby	404 bio not found
3	devdojo	404 bio not found
4	tony	404 bio not found
5	bobby	404 bio not found
6	devdojo	404 bio not found
7	tony	404 bio not found
+----+----------+-------------------+

75

Let's now say that we wanted to update the about column for the user
with an id of 2. In this case, we need to specify a WHERE clause followed
by the ID of the user that we want to update as follows:

UPDATE users SET about='Hello World :)' WHERE id=2;

The output here should indicate that only 1 row was updated:

Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Now, if you again run the SELECT id,username,about FROM users
query, you would see that the user with id '2' now has an updated
about column data:

+----+----------+-------------------+
| id | username | about |
+----+----------+-------------------+
2	bobby	Hello World :)
3	devdojo	404 bio not found
4	tony	404 bio not found
5	bobby	404 bio not found
6	devdojo	404 bio not found
7	tony	404 bio not found
+----+----------+-------------------+

76

DELETE

As the name suggests, the DELETE statement would remove data from
your database.

The syntax is as follows:

DELETE FROM users WHERE id=5;

The output should indicate that 1 row was affected:

Query OK, 1 row affected (0.01 sec)

Important: Just like the UPDATE statement, if you don't specify a WHERE
clause, all of the entries from the table will be affected, meaning that all
of your users will be deleted. So it is critical to always add a WHERE
clause when executing a DELETE statement.

Similar to the Linux rm command, when you use the DELETE statement,
the data would be gone permanently, and the only way to recover your
data would be by restoring a backup.

77

JOIN

The JOIN clause allows you to combine the data from 2 or more tables
into one result set.

As we will be selecting from multiple columns, we would need to include
the list of the columns that we want to select data from after the FROM
clause separated by a comma.

In this chapter, we will go over the following JOIN types:

CROSS Join
INNER Join
LEFT Join
RIGHT Join

Before we get started, let's create a new database and 2 tables that we
are going to work with:

We are going to call the database demo_joins:

CREATE DATABASE demo_joins;

Then switch to the new database:

USE demo_joins;

Then the first table will be called users and it will only have 2
columns: id and username:

78

CREATE TABLE users
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 username VARCHAR(255) NOT NULL
);

Then let's create a second table called posts, and to keep things
simple we will have three two columns: id, user_id and title:

CREATE TABLE posts
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 user_id INT,
 title VARCHAR(255) NOT NULL
);

The user_id column would be used to reference the ID of the user that
the post belongs to. It is going to be a one to many relation, e.g. one
user could have many post:

Now, let's add some data into the two tables first by creating a few
users:

79

INSERT INTO users
 (username)
VALUES
 ('bobby'),
 ('devdojo'),
 ('tony'),
 ('greisi');

And finally add some posts:

INSERT INTO posts
 (user_id, title)
VALUES
 ('1', 'Hello World!'),
 ('2', 'Getting started with SQL'),
 ('3', 'SQL is awesome'),
 ('2', 'MySQL is up!'),
 ('1', 'SQL - structured query language');

Now that we've got our tables and demo data ready let's go ahead and
learn how to use joins.

80

Cross join

The CROSS join allows you to basically put the result of two tables next
to each other without specifying any WHERE conditions. This makes the
CROSS join the simplest one, but it also not of much use in a real-life
scenario.

So if we were to select all of the users and all of the posts side by side,
we will use the following query:

SELECT * FROM users CROSS JOIN posts;

The output will be all of your users and all of the posts side by side:

81

+----+----------+----+--------+-----------------+
| id | username | id |user_id | title |
+----+----------+----+--------+-----------------+
4	greisi	1	1	Hello World!
3	tony	1	1	Hello World!
2	devdojo	1	1	Hello World!
1	bobby	1	1	Hello World!
4	greisi	2	2	Getting started
3	tony	2	2	Getting started
2	devdojo	2	2	Getting started
1	bobby	2	2	Getting started
4	greisi	3	3	SQL is awesome
3	tony	3	3	SQL is awesome
2	devdojo	3	3	SQL is awesome
1	bobby	3	3	SQL is awesome
4	greisi	4	2	MySQL is up!
3	tony	4	2	MySQL is up!
2	devdojo	4	2	MySQL is up!
1	bobby	4	2	MySQL is up!
4	greisi	5	1	SQL
3	tony	5	1	SQL
2	devdojo	5	1	SQL
1	bobby	5	1	SQL
+----+----------+----+--------+-----------------+

As mentioned above, in a real-life scenario, you will highly unlikely run a
CROSS join for two whole tables. You would most likey use one of the
following joins instead combined with a specific condition.

82

Inner join

The INNER join is used to join two tables, however, unlike the CROSS join,
it is based on a condition. By using an INNER join, you can match the
first table to the second one.

As we have a one-to-many relationship, a best practice would be to use
a primary key for the posts id column and a foreign key for the
user_id; that way, we can 'link' or relate the users table to the posts
table. However, this is beyond the scope of this SQL basics eBook,
though I might extend it in the future and add more chapters.

As an example and to make things a bit clearer, let's say that you
wanted to get all of your users and the posts associated with each user.
The query that we would use will look like this:

SELECT * FROM users
INNER JOIN posts
ON users.id = posts.user_id;

Rundown of the query:

SELECT * FROM users: this is a standard select that we've covered
many times in the previous chapters.
INNER JOIN posts: then we specify the second table, which table
we want to join the result set with
ON users.id = posts.user_id: finally, we specify the logic on
how we want the data in these two tables to be merged together.
The user.id is the id column of the user table, which is also the
primary ID, and posts.user_id is the foreign key in the email
address table referring to the ID column in the users table.

The output will be the following, associating each user with their post
based on the user_id column:

83

+----+----------+----+---------+-----------------+
| id | username | id | user_id | title |
+----+----------+----+---------+-----------------+
1	bobby	1	1	Hello World!
2	devdojo	2	2	Getting started
3	tony	3	3	SQL is awesome
2	devdojo	4	2	MySQL is up!
1	bobby	5	1	SQL
+----+----------+----+---------+-----------------+

The main things that you need to keep in mind here are the INNER JOIN
and ON clauses.

With the inner join, the NULL values are discarded. For example, if you
have a user who does not have a post associated with it, when running
the above INNER join query, the user that has NULL posts will not be
displayed.

To get the null values as well, you would need to use an outer join.

84

Left join

By using the LEFT OUTER join, you would get all rows from the first table
that you've specified, and if there are no associated records with it
within the second table, you will get a NULL value.

In our case, we have a user called graisi, which is not associated with
a specific post. As you can see from the output from the previous query,
the graisi user was not present in there. To show that user even
though it does not have an associated post with it, you could use a LEFT
OUTER join:

SELECT *
FROM users
LEFT JOIN posts ON users.id = posts.user_id;

The output will look like this:

+----+----------+------+---------+-----------------+
| id | username | id | user_id | title |
+----+----------+------+---------+-----------------+
1	bobby	1	1	Hello World!
2	devdojo	2	2	Getting started
3	tony	3	3	SQL is awesome
2	devdojo	4	2	MySQL is up!
1	bobby	5	1	SQL
4	greisi	NULL	NULL	NULL
+----+----------+------+---------+-----------------+

85

Right join

The RIGHT OUTER join is the exact opposite of the LEFT OUTER join. It
will display all of the rows from the second table and give you a NULL
value in case that it does not match with an entry from the first table.

Let's create a post that does not have a matching user id:

INSERT INTO posts
 (user_id, title)
VALUES
 ('123', 'No user post!');

We are specifying 123 as the user ID, but we don't have such a user in
our users table.

Now, if you were to run the LEFT outer join, you would not see the post
as it has a null value for the corresponding users table.

But if you were to run a RIGHT outer join, you would see the post but
not the greisi user as it does not have any posts:

SELECT * FROM users RIGHT JOIN posts ON users.id =
posts.user_id;

Output:

86

+------+----------+----+---------+-----------------+
| id | username | id | user_id | title |
+------+----------+----+---------+-----------------+
1	bobby	1	1	Hello World!
2	devdojo	2	2	Getting started
3	tony	3	3	SQL is awesome
2	devdojo	4	2	MySQL is up!
1	bobby	5	1	SQL
NULL	NULL	6	123	No user post!
+------+----------+----+---------+-----------------+

87

Conclusion

The whole concept of joins might be very confusing in the beginning but
would make a lot of sense once you get used to it.

The best way to wrap your head around it is to write some queries and
play around with each type of JOIN and see how the result set changes.

For more information, you could take a look at the official
documentation here.

88

The MySQL dump command

There are many ways and tools on how to export or backup your MySQL
databases. In my opinion, mysqldump is a great tool to accomplish this
task.

The mysqldump tool can be used to dump a database or a collection of
databases for backup or transfer to another database server (not
necessarily MariaDB or MySQL). The dump typically contains SQL
statements to create the table, populate it, or both.

One of the main benefits of mysqldump is that it is available out of the
box on almost all shared hosting servers. So if you are hosting your
database on a cPanel server that you don't have root access to, you
could still use it to export larger databases.

89

Exporting a Database

In order to export/backup a database, all you need to do is run the
following command:

mysqldump -u your_username -p your_database_name >
your_database_name-$(date +%F).sql

Note that you need to change the your_database_name with the actual
name of your database and the your_username part with your actual
MySQL username.

Rundown of the arguments:

-u: needs to be followed by your MySQL username
-p: indicates that you would be prompted for your MySQL
password
>: indicates that the output of the command should be stored in
the .sql file that you specify after that sign

By running the above command, you would create an export of your
database, which you could later use as a backup or even transfer it to
another server.

90

Exporting all databases

If you have root access to the server, you could use the --all-
databases flag in order to export all of the databases hosted on the
particular MySQL server. The downside of this approach is that this
would create one single .sql export, which would contain all of the
databases.

Let's say that you would like to export each database into a separate
.sql file. You could do that with the following script:

91

#!/bin/bash

##
Get a list of all databases except the system databases that
are not needed
##
DATABASES=$(echo "show databases;" | mysql | grep -Ev
"(Database|information_schema|mysql|performance_schema)")

DATE=$(date +%d%m%Y)
TIME=$(date +%s)
BACKUP_DIR=/home/your_user/backup

##
Create Backup Directory
##

if [! -d ${BACKUP_DIR}]; then
 mkdir -p ${BACKUP_DIR}
fi

##
Backup all databases
##

for DB in $DATABASES;
do
 mysqldump --single-transaction --skip-lock-tables $DB |
gzip > ${BACKUP_DIR}/$DATE-$DB.sql.gz
done

The script would backup each database and would store the .sql dumps
in the /home/your_user/backup folder. Make sure to adjust the path to
your backup folder.

For more information on Bash scripting check out this opensource
eBook here.

92

Automated backups

You can even set a cronjob to automate the backups above, that way
you would have regular backups of your databases.

In order to do that, you need to make sure that you have the following
content in your .my.cnf file. The file should be stored at:

/home/your_user/.my.cnf

You should make sure that it has secure permissions:

chmod 600 /home/your_user/.my.cnf

And you should add the following content:

[client]
user=your_mysql_user
password=your_mysql_password

Once you have your .my.cnf file configured, you set up a cronjob to
trigger the mysqldump export of your database:

0 10,22 * * * /usr/bin/mysqldump -u your_username -p
your_database_name > your_database_name-$(date +%F).sql

The above would run at 10 AM and 10 PM every day, so you will have 2
daily backups of your database.

93

You can even expand the logic and add a compression step so that the
.sql dumps do not consume too much webspace.

94

Conclusion

The mysqldump is a great tool to easily and quickly backup your MySQL
databases.

For more information, you could take a look at the official
documentation here:

mysqldump

This was originally posted here.

95

Conclusion

Congratulations! You have just completed the SQL basics guide!

If you found this helpful, be sure to star the project on GitHub!

If you have any suggestions for improvements, make sure to contribute
pull requests or open issues.

In this introduction to SQL eBook, we just covered the basics, but you
still have enough under your belt to start working with any relational
database out there!

As a next step, try to create a database server, import some demo
data, and play around with all of the statements that you've learned so
far. You can also take a look at this website here to help you build your
tables and relations and visualize them:

https://dbdiagram.io/

In case that this eBook inspired you to contribute to some fantastic
open-source project, make sure to tweet about it and tag @bobbyiliev_
so that we could check it out!

Congrats again on completing this eBook!

96

Other eBooks

Some other opensource eBooks that you might find helpful are:

Introduction to Git and GitHub
Introduction to Bash Scripting

	Contents
	About the book
	About the author
	Sponsors
	Ebook PDF Generation Tool
	Book Cover
	License

	Databases
	Tables and columns

	MySQL
	Installing MySQL
	Accessing MySQL via CLI
	Creating a database
	Configuring .my.cnf
	The mysqladmin command
	GUI clients

	Tables
	Data types
	Creating a database
	Creating tables
	Dropping tables
	Allowing NULL values
	Specifying a primary key
	Updating tables

	Basic Syntax
	INSERT
	SELECT
	UPDATE
	DELETE
	Comments
	Conclusion

	SELECT
	SELECT all columns
	Formatting
	SELECT specific columns only
	LIMIT
	COUNT
	MIN, MAX, AVG, and SUM
	DISTINCT
	Conclusion

	WHERE
	WHERE Clause example
	Operators
	AND keyword
	OR keyword
	LIKE operator

	IN operator
	IS operator
	Conclusion

	Sorting with ORDER and GROUP BY
	ORDER BY
	GROUP BY

	INSERT
	Inserting multiple records

	UPDATE
	DELETE
	JOIN
	Cross join
	Inner join
	Left join
	Right join
	Conclusion

	The MySQL dump command
	Exporting a Database
	Exporting all databases

	Automated backups
	Conclusion

	Conclusion
	Other eBooks

